分布式锁与实现(一)—基于Redis实现

发布于 2019-01-08

分布式锁与实现(一)—基于Redis实现

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。

在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。

选用Redis实现分布式锁原因

  • Redis有很高的性能
  • Redis命令对此支持较好,实现起来比较方便

在此就不介绍Redis的安装了,具体在Linux和Windows中的安装可以查看以下博客。
http://www.cnblogs.com/liuyang0/p/6504826.html

使用命令介绍

  • SETNX key val
    当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。
  • expire key timeout
    为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。
  • delete key
    删除key

在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。

实现

使用的是jedis来连接Redis。

实现思想

  • 获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
  • 获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
  • 释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放

分布式锁的核心代码如下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Transaction;
import redis.clients.jedis.exceptions.JedisException;

import java.util.List;
import java.util.UUID;

/**
 * Created by liuyang on 2017/4/20.
 */
public class DistributedLock {
    private final JedisPool jedisPool;

    public DistributedLock(JedisPool jedisPool) {
        this.jedisPool = jedisPool;
    }

    /**
     * 加锁
     * @param locaName  锁的key
     * @param acquireTimeout  获取超时时间
     * @param timeout   锁的超时时间
     * @return 锁标识
     */
    public String lockWithTimeout(String locaName,
                                  long acquireTimeout, long timeout) {
        Jedis conn = null;
        String retIdentifier = null;
        try {
            // 获取连接
            conn = jedisPool.getResource();
            // 随机生成一个value
            String identifier = UUID.randomUUID().toString();
            // 锁名,即key值
            String lockKey = "lock:" + locaName;
            // 超时时间,上锁后超过此时间则自动释放锁
            int lockExpire = (int)(timeout / 1000);

            // 获取锁的超时时间,超过这个时间则放弃获取锁
            long end = System.currentTimeMillis() + acquireTimeout;
            while (System.currentTimeMillis() < end) {
                if (conn.setnx(lockKey, identifier) == 1) {
                    conn.expire(lockKey, lockExpire);
                    // 返回value值,用于释放锁时间确认
                    retIdentifier = identifier;
                    return retIdentifier;
                }
                // 返回-1代表key没有设置超时时间,为key设置一个超时时间
                if (conn.ttl(lockKey) == -1) {
                    conn.expire(lockKey, lockExpire);
                }

                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        } catch (JedisException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                conn.close();
            }
        }
        return retIdentifier;
    }

    /**
     * 释放锁
     * @param lockName 锁的key
     * @param identifier    释放锁的标识
     * @return
     */
    public boolean releaseLock(String lockName, String identifier) {
        Jedis conn = null;
        String lockKey = "lock:" + lockName;
        boolean retFlag = false;
        try {
            conn = jedisPool.getResource();
            while (true) {
                // 监视lock,准备开始事务
                conn.watch(lockKey);
                // 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁
                if (identifier.equals(conn.get(lockKey))) {
                    Transaction transaction = conn.multi();
                    transaction.del(lockKey);
                    List results = transaction.exec();                    
                    if (results == null) {
                        continue;
                    }
                    retFlag = true;
                }
                conn.unwatch();
                break;
            }
        } catch (JedisException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                conn.close();
            }
        }
        return retFlag;
    }
}

测试

下面就用一个简单的例子测试刚才实现的分布式锁。
例子中使用50个线程模拟秒杀一个商品,使用–运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。

模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。

import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

/**
 * Created by liuyang on 2017/4/20.
 */
public class Service {
    private static JedisPool pool = null;

    static {
        JedisPoolConfig config = new JedisPoolConfig();
        // 设置最大连接数
        config.setMaxTotal(200);
        // 设置最大空闲数
        config.setMaxIdle(8);
        // 设置最大等待时间
        config.setMaxWaitMillis(1000 * 100);
        // 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的
        config.setTestOnBorrow(true);
        pool = new JedisPool(config, "127.0.0.1", 6379, 3000);
    }

    DistributedLock lock = new DistributedLock(pool);

    int n = 500;

    public void seckill() {
        // 返回锁的value值,供释放锁时候进行判断
        String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
        System.out.println(Thread.currentThread().getName() + "获得了锁");
        System.out.println(--n);
        lock.releaseLock("resource", indentifier);
    }
}

模拟线程进行秒杀服务

public class ThreadA extends Thread {
    private Service service;

    public ThreadA(Service service) {
        this.service = service;
    }

    @Override
    public void run() {
        service.seckill();
    }
}

public class Test {
    public static void main(String[] args) {
        Service service = new Service();
        for (int i = 0; i < 50; i++) {
            ThreadA threadA = new ThreadA(service);
            threadA.start();
        }
    }
}

结果如下,结果为有序的。

若注释掉使用锁的部分

public void seckill() {
    // 返回锁的value值,供释放锁时候进行判断
    //String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
    System.out.println(Thread.currentThread().getName() + "获得了锁");
    System.out.println(--n);
    //lock.releaseLock("resource", indentifier);
}

从结果可以看出,有一些是异步进行的。

在分布式环境中,对资源进行上锁有时候是很重要的,比如抢购某一资源,这时候使用分布式锁就可以很好地控制资源。
当然,在具体使用中,还需要考虑很多因素,比如超时时间的选取,获取锁时间的选取对并发量都有很大的影响,上述实现的分布式锁也只是一种简单的实现,主要是一种思想。

下一次我会使用zookeeper实现分布式锁,使用zookeeper的可靠性是要大于使用redis实现的分布式锁的,但是相比而言,redis的性能更好。

喜欢 0
奋楫笃行,臻于至善!

相关文章

使用 Mycat 中间件搭建 MySQL 高可用实现分库分表及读写分离

Mycat 是一款基于阿里开源产品Cobar而研发的开源数据库分库分表中间件(基于Java语言开发),可以用来方便地搭建面向企业应用开发的大数据库集群,支持事务、ACID等特性,其核心是基于代理方案实...
阅读全文

通用架构模式和通用架构服务

架构模式是在给定上下文的软件架构中,针对常发生问题的一种通用、复用的解决方案。架构模式类似于软件设计模式,但是范畴更广。一个好的软件产品往往需要有良好的架构思想和架构服务来支撑整个软件的生命周期,本文...
阅读全文

Java 的可重入锁和不可重入锁

可重入锁又名递归锁,是指在同一个线程在外层方法获取锁的时候,再进入该线程的内层方法会自动获取锁(前提锁对象得是同一个对象或者class),不会因为之前已经获取过还没释放而阻塞。Java中Reentra...
阅读全文

Redis 的两种持久化方式及使用场景分析

Redis是内存数据库,数据都是存储在内存中,为了避免进程退出导致数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘。当下次Redis重启时,利用持久化文件实现数据恢...
阅读全文

redis 高可用主从,哨兵,集群解决方案

Redis因为其高性能和易用性在我们后端的服务中发挥了巨大的作用,并且很多重要功能的实现都会依赖redis。除了常用的缓存,还有队列,发布订阅等重要用处。所以redis的服务高可用就显得尤为关键。这里...
阅读全文

Redis 缓存穿透、缓存击穿、缓存雪崩的区别及解决方案

Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也带来了一些问题。其中,最要害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对数据的一致性要求很...
阅读全文

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注